The Development and Validation of the Minnesota Severe and Frequent Estimate for Discipline (MnSafeD)

Grant Duwe
Director, Research and Evaluation
Email: grant.duwe@state.mn.us

September 2019
Overview

• Background
 • Professional vs. Actuarial Judgment
 • Customization
 • Automation
 • Bias

• Minnesota Severe and Frequent Estimate for Discipline (MnSafeD)
 • Development
 • Validation

• Predictive Performance Results

• Next Steps
Paul Meehl: Clinical Psychologist at U of M

- Book in 1954: Clinical vs. Statistical Prediction
- Found that “mechanical” (formal, algorithmic) prediction outperformed “clinical” judgment (informal and subjective)
- Mechanical prediction is more reliable ➔ consistent
- In the more than 70 years since Meehl’s book, research from a variety of fields has consistently confirmed that statistical prediction outperforms clinical judgment

➢ Professor of Psychology at U of M from 1945 to 2003
Daniel Kahneman and Amos Tversky

- Kahneman and Tversky research on cognitive biases in decision-making
 - Why statistical prediction outperforms professional judgment
- Examples
 - Confirmation bias: discredit unsupportive info
 - Anchoring: excessive weight to unimportant characteristics
 - Familiarity/availability: situations seem similar
 - Base rate bias: favor specific info about a case vs. general info about group

- Currently Professor at Princeton University
- Won the 2002 Nobel Prize in Economics for work on decision-making
Research on Use of “Expert” Judgment

- Fields outside corrections that make risk assessment decisions
 - Health care, financial lending, insurance, stock trading
 - Evidence consistently shows that algorithms perform better than “expert” opinion or professional judgment
 - This is why all of these fields now rely mostly on algorithms/statistical prediction to make risk assessment decisions (process is often automated)
 - More valid, reliable, objective, efficient and cost-effective
- Corrections \(\rightarrow\) predicting who will recidivate
 - General recidivism for correctional populations
 - Professional overrides led to reduced predictive performance
 - Wormith et al. (2012)
 - McCafferty (2017)
Prior Research on Customization

• Not much research has explicitly addressed this issue
 • Customized vs. Global, “off the shelf”

• But here’s what we know:
 • A few studies suggest local instruments likely have better performance than assessments developed on other correctional populations

• Example: Level of Service (LS) family of tools (LSI-R and LS/CMI)
 • Most widely-used assessment for general recidivism
 • LS tools = developed and validated on Canadian correctional populations
 • Meta-analysis of LS validation studies (Olver et al., 2014)
 • Best performance for LS tools \(\rightarrow\) studies on Canadian offender populations
 • Worst performance for LS tools \(\rightarrow\) studies on U.S. offender populations
 • Validation research on the LSI-R for MN prisoners confirms this
 • LSI-R = relatively poor performance in predicting recidivism for MN prisoners
The “Home-Field Advantage”

- Study by Duwe and Rocque (2018): MnSOST-3 outperformed Static-99 on MN sex offender population
 - Static-99: developed on SO population from Canada/UK
 - MnSOST-3: developed on MN sex offender population
- There is a home-field advantage to risk assessment
- Home-grown assessments will (all else being equal) likely outperform assessments developed elsewhere
- Common Practice—what usually happens
 - Use assessment developed/validated on another correctional population
 - Assume assessment will perform just as well on own population
 - This is not a safe assumption to make
- What should happen ➔ An assessment’s performance should be evaluated/tested before it is used to help inform decisions
Impact of Using Automated Scoring Method

- Duwe and Rocque (2017) study in *Criminology & Public Policy*
 - Examined effects of automated risk assessment on reliability, predictive validity and return on investment (ROI)
- Minnesota DOC began using MnSTARR in 2013
 - Gender-specific, manually-scored assessment risk for multiple types of recidivism
 - Felony, non-violent, violent and sexual offending
 - Static and dynamic items
 - Average = 35 minutes to score (by prison caseworkers)
- MnDOC → Began using MnSTARR 2.0 in 2016
 - Similar to original MnSTARR but…
 - Fully-automated assessment (prison staff do not score it)
 - Overnight batch process and/or generated by caseworker (10-15 seconds to run)
 - About 2X the number of items (nearly 50 total)
Results from Duwe and Rocque (2017) Study

- Automation eliminates inter-rater disagreement
 - Every assessment is scored the same way (removes layer of error)
 - Doesn’t mean data are flawless

- Increased reliability \rightarrow Better predictive performance
 - As reliability got worse in manual assessments, so did the predictive performance
 - Cases w/ more inter-rater disagreement = worse predictive performance

- Investment/Cost = $135,000 to automate (a one-time cost)

- Return/Benefits = MnDOC staff time saved from automation
 - Monetized staff time = salary/benefits for prison caseworkers
 - Automation = major increase in assessment capacity

- Benefit/Cost Estimate after:
 - Year 1 = $452,108; ROI = $4.35 (Actual = $955,990; ROI = $8.08)
 - Year 2 = $1.04 million; ROI = $8.70 (Actual = $1.8 million; ROI = $13.32)
 - Year 5 = $2.8 million; ROI = $21.74
Bias in Risk Assessment

• ProPublica ➔ Use of COMPAS in Florida
 • Allegations of racial bias

• Canada ➔ performance for indigenous population

• A lot of confusion/misunderstanding
 • Risk Assessments used in a lot of different ways
 • Alternative?
 • Human/Professional Judgment = more biased

• Imperative to test for bias
 • Evaluate performance among sub-populations
 • Beyond this, not much guidance (yet)
 • A difference in performance does not equate to bias
 • Example: AUC of 0.90 versus AUC of 0.85
MnDOC Current Classification System

- Late 1990s ➔ MnDOC implemented a classification assessment
 - Received technical assistance from NIC (like a lot of other states)
- MnDOC Classification Assessment
 - Scored manually by staff
 - Conduct a file/database review
 - 6 Items
 - Current offense
 - History of assault
 - Institutional adjustment
 - History of escape
 - Age
 - Custody level at most recent release
 - Uses a simple, summative weighting scheme (Burgess)
- Parole violator admissions = not reassessed
- Never validated…until now
What’s the MnSafeD?

- A fully-automated, gender-specific classification assessment that predicts severe and frequent misconduct for individuals in prison on a recurring, semi-annual basis
 - Classification assessments used to help make security/custody level decisions for those in prison
- Developed on sample of 39,355 releases from Minnesota prisons (2006-2011)
 - 35,506 males
 - 3,849 females
- Used bootstrap resampling, k-fold and split-population methods to select predictors and validate/test predictive performance
- Used multiple metrics to evaluate predictive performance
Predicting Prison Misconduct

- MnSafeD predicts “severe and frequent misconduct”
 - Multiple discipline convictions and/or violent/assaultive misconduct within a six-month period
 - About 10% of Minnesota’s prison population

- Why not just predict all misconduct?
 - Nearly one-third of MN inmates have at least one discipline conviction (DC)
 - Attempting to predict who will have at least one DC = not helpful in managing risk

- Insight from career criminal literature
 - Small # of prolific offenders responsible for a lot of crime
 - Same is true for misconduct
 - 10% of MN prisoners = 70% of all DCs, 80% of seg DCs and 100% of violent DCs (males)
 - Compromise safety for staff and other inmates
 - Predictors of recidivism and prison misconduct = a lot of overlap
Other Design Assumptions

- **Gender-specific**
 - Potential gender differences in risk and protective factors
 - Males and females also housed in different facilities
 - Misconduct can be influenced by facility-level factors

- **Fully-Automated Scoring Method**
 - More reliable, valid, efficient and cost-effective than a manual scoring method
 - MnSafeD leverages work on MnSTARR 2.0
 - Fully-automated recidivism risk assessment used by MnDOC since November 2016

- **Assessment predicts SFM at intake and reassesses every 6 months thereafter**
 - This is how MnDOC uses its current classification assessment
 - Current classification assessment = predictive performance never evaluated
 - Based on NIC model from late 1990s (like a lot of state DOC’s)
Model Development and Validation

- **Regularized logistic regression = classification algorithm**
 - “Shrinks” large coefficients to reduce overfitting
- **Used bootstrap resampling method to help identify significant, robust predictors**
 - P < .05 in at least 70% of 1K bootstrap samples
- **Validation**
 - Split samples into training (2006-2009 releases) and test (2010-2011 releases) sets; also used additional test set (2017 admissions)
 - Using 10-fold CV, varied ridge estimator value on training set data to help identify the best performing model
 - Best models were then applied to test sets to evaluate predictive performance
- **Performance Metrics**
 - ACC, AUC, H, PRC, RMSE, SAR and SHARP
 - Focus on AUC (for this presentation)
Dataset

- Predicted Outcome = SFM within a six-month window or release
 - Multiple discipline convictions and/or violent/assaultive misconduct within a six-month period

- Predictors (similar to those used for MnSTARR 2.0)
 - Criminal history
 - Type/severity of offenses, specialization in specific offenses (violent, felony, drug, etc.)
 - Offense type (index)
 - Prison admission type
 - Suicidal tendencies
 - Security threat group (gang affiliation)
 - Demographics → age at release, marital status

- Main difference in predictors (between MnSTARR & MnSafeD)
 - Also considered prior prison misconduct (for those in prison previously)
 - Incorporated recent prison data for reassessments
 - Prison misconduct (frequency and severity)
 - Involvement in prison programming
 - UI status = unauthorized idle

- Data split up in 6-month intervals (per inmate)
Example: Male Prisoner Dataset

<table>
<thead>
<tr>
<th></th>
<th>Training Set (N)</th>
<th>Test Set (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td>23,838</td>
<td>11,668</td>
</tr>
<tr>
<td>Intake (2017 test set)</td>
<td>23,838</td>
<td>3,468</td>
</tr>
<tr>
<td>6-Month Reassessment</td>
<td>12,481</td>
<td>6,875</td>
</tr>
<tr>
<td>6-Month Reassessment (2017)</td>
<td>12,481</td>
<td>735</td>
</tr>
<tr>
<td>12-Month Reassessment</td>
<td>7,778</td>
<td>4,468</td>
</tr>
<tr>
<td>18-Month Reassessment</td>
<td>5,247</td>
<td>2,833</td>
</tr>
<tr>
<td>24-Month Reassessment</td>
<td>3,745</td>
<td>1,994</td>
</tr>
<tr>
<td>30-Month Reassessment</td>
<td>2,724</td>
<td>1,447</td>
</tr>
<tr>
<td>36-Month Reassessment</td>
<td>1,886</td>
<td>1,032</td>
</tr>
<tr>
<td>42-Month Reassessment</td>
<td>1,365</td>
<td>767</td>
</tr>
</tbody>
</table>
Predictive Performance Results for Female Test Set

<table>
<thead>
<tr>
<th></th>
<th>Current Classification (AUC)</th>
<th>MnSafeD (AUC)</th>
<th>Training Set N</th>
<th>Test Set N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td>0.628</td>
<td>0.759</td>
<td>2,546</td>
<td>1,303</td>
</tr>
<tr>
<td>Intake (2017 test set)</td>
<td>0.607</td>
<td>0.731</td>
<td>2,546</td>
<td>710</td>
</tr>
<tr>
<td>6-Month Reassessment</td>
<td>0.655</td>
<td>0.854</td>
<td>1,076</td>
<td>592</td>
</tr>
<tr>
<td>6-Month Reassessment (2017)</td>
<td>0.650</td>
<td>0.922</td>
<td>1,076</td>
<td>177</td>
</tr>
<tr>
<td>12-Month Reassessment</td>
<td>0.694</td>
<td>0.909</td>
<td>562</td>
<td>352</td>
</tr>
<tr>
<td>18-Month Reassessment</td>
<td>0.681</td>
<td>0.819</td>
<td>312</td>
<td>211</td>
</tr>
<tr>
<td>Overall Average</td>
<td>0.653</td>
<td>0.832</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **AUC “rule of thumb”**
 - >= 0.90 “A”
 - 0.80-0.89 = “B”
 - 0.70-0.79 = “C”
 - 0.60-0.69 = “D”
 - < 0.60 = “F”
Predictive Performance Results for Male Test Set

<table>
<thead>
<tr>
<th></th>
<th>Current Classification (AUC)</th>
<th>MnSafeD (AUC)</th>
<th>Training Set N</th>
<th>Test Set N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td>0.632</td>
<td>0.768</td>
<td>23,838</td>
<td>11,668</td>
</tr>
<tr>
<td>Intake (2017 test set)</td>
<td>0.617</td>
<td>0.747</td>
<td>23,838</td>
<td>3,468</td>
</tr>
<tr>
<td>6-Month Reassessment</td>
<td>0.665</td>
<td>0.828</td>
<td>12,481</td>
<td>6,875</td>
</tr>
<tr>
<td>6-Month Reassessment (2017)</td>
<td>0.650</td>
<td>0.800</td>
<td>12,481</td>
<td>735</td>
</tr>
<tr>
<td>12-Month Reassessment</td>
<td>0.674</td>
<td>0.857</td>
<td>7,778</td>
<td>4,468</td>
</tr>
<tr>
<td>18-Month Reassessment</td>
<td>0.674</td>
<td>0.876</td>
<td>5,247</td>
<td>2,833</td>
</tr>
<tr>
<td>24-Month Reassessment</td>
<td>0.690</td>
<td>0.884</td>
<td>3,745</td>
<td>1,994</td>
</tr>
<tr>
<td>30-Month Reassessment</td>
<td>0.666</td>
<td>0.871</td>
<td>2,724</td>
<td>1,447</td>
</tr>
<tr>
<td>36-Month Reassessment</td>
<td>0.688</td>
<td>0.888</td>
<td>1,886</td>
<td>1,032</td>
</tr>
<tr>
<td>42-Month Reassessment</td>
<td>0.697</td>
<td>0.840</td>
<td>1,365</td>
<td>767</td>
</tr>
<tr>
<td>Overall Average</td>
<td>0.665</td>
<td>0.836</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Explaining the Results

- **MnSafeD** = high level of predictive performance
 - Better than what’s usually observed for recidivism, including MnSTARR (recidivism risk assessment for MN prisoners)
- **Why?**
 - **Predictive performance advantages:**
 - Customized to MN population = “home field advantage”
 - Uses automated scoring = more reliable (no inter-rater disagreement)
 - Classification algorithm: RLR > Burgess methods
- **Better than MnSTARR 2.0**
 - Recent behavioral indicators = influential in predicting SFM
 - Severity and frequency of prison misconduct in last 6 months or since most recent admission to prison
 - UI status (no programming) in last 6 months
Next Steps

- **MnSafeD** = MnDOC new classification assessment
 - MnDOC IT currently working on implementing the MnSafeD

- MnSafeD will be used to help determine custody-level placement

- Custody-level assignment is important
 - But should it be the only way a classification assessment is used?
Making the Case for Front-Loading

• Programming often “back-loaded” closer to time of release
 • There’s good reason for this → better recidivism outcomes

• Improving institutional safety = more than just custody-level placement

• Front-loading programming
 • …at least for those at high-risk of SFM
 • Deliver programming to those at high risk of SFM shortly after intake/beginning of confinement
 • Example: immediately prioritize those at highest risk of SFM (top 5 percent) for an intervention (e.g., cognitive-behavioral therapy) at the beginning of confinement
 • Front-loading may not only reduce misconduct but also increase dosage
 • Greater dosage = better recidivism outcomes
Final Thoughts

- A lot of prison systems still use what are, by now, outdated classification assessments
 - How are these performing?

MnSafeD represents one approach
- Not designed to be a one-size-fits-all solution
- Some of it may be worth replicating in the event prison systems (or jail systems) upgrade their classification assessments

MnSafeD study will be published in *The Prison Journal*
- Citation: Duwe, G. (forthcoming). The development and validation of a prison classification system designed to predict severe and frequent misconduct. *The Prison Journal.*