The Development and Validation of the Minnesota Severe and Frequent Estimate for Discipline (MnSafeD)

Grant Duwe Director, Research and Evaluation Email: grant.duwe@state.mn.us

September 2019

- Background
 - Professional vs. Actuarial Judgment
 - Customization
 - Automation
 - Bias
- Minnesota Severe and Frequent Estimate for Discipline (MnSafeD)
 - Development
 - Validation
- Predictive Performance Results
- Next Steps

Paul Meehl: Clinical Psychologist at U of M

- Book in 1954: Clinical vs. Statistical Prediction
- Found that "mechanical" (formal, algorithmic) prediction outperformed "clinical" judgment (informal and subjective)
- Mechanical prediction is more reliable → consistent
- In the more than 70 years since Meehl's book, research from a variety of fields has consistently confirmed that statistical prediction outperforms clinical judgment

 Professor of Psychology at U of M from 1945 to 2003

Daniel Kahneman and Amos Tversky

- Kahneman and Tversky research on cognitive biases in decision-making
 - Why statistical prediction outperforms professional judgment
- Examples
 - Confirmation bias: discredit unsupportive info
 - Anchoring: excessive weight to unimportant characteristics
 - Familiarity/availability: situations seem similar
 - Base rate bias: favor specific info about a case vs. general info about group

- Currently Professor at Princeton University
- Won the 2002 Nobel Prize in Economics for work on decision-making

Research on Use of "Expert" Judgment

- Fields outside corrections that make risk assessment decisions
 - Health care, financial lending, insurance, stock trading
 - Evidence consistently shows that algorithms perform better than "expert" opinion or professional judgment
 - This is why all of these fields now rely mostly on algorithms/statistical prediction to make risk assessment decisions (process is often automated)
 - More valid, reliable, objective, efficient and cost-effective
- Corrections \rightarrow predicting who will recidivate
 - General recidivism for correctional populations
 - Professional overrides led to reduced predictive performance
 - Wormith et al. (2012)
 - McCafferty (2017)

Prior Research on Customization

- Not much research has explicitly addressed this issue
 - Customized vs. Global, "off the shelf"
- But here's what we know:
 - A few studies suggest local instruments likely have better performance than assessments developed on other correctional populations
 - Example: Level of Service (LS) family of tools (LSI-R and LS/CMI)
 - Most widely-used assessment for general recidivism
 - LS tools = developed and validated on Canadian correctional populations
 - Meta-analysis of LS validation studies (Olver et al., 2014)
 - Best performance for LS tools \rightarrow studies on Canadian offender populations
 - Worst performance for LS tools \rightarrow studies on U.S. offender populations
 - Validation research on the LSI-R for MN prisoners confirms this
 - LSI-R = relatively poor performance in predicting recidivism for MN prisoners

The "Home-Field Advantage"

- Study by Duwe and Rocque (2018): MnSOST-3 outperformed Static-99 on MN sex offender population
 - Static-99: developed on SO population from Canada/UK
 - MnSOST-3: developed on MN sex offender population
 - There is a home-field advantage to risk assessment
 - Home-grown assessments will (all else being equal) likely outperform assessments developed elsewhere
 - Common Practice—what usually happens
 - Use assessment developed/validated on another correctional population
 - Assume assessment will perform just as well on own population
 - This is not a safe assumption to make
 - What should happen → An assessment's performance should be evaluated/tested before it is used to help inform decisions

Impact of Using Automated Scoring Method

- Duwe and Rocque (2017) study in *Criminology & Public Policy*
 - Examined effects of automated risk assessment on reliability, predictive validity and return on investment (ROI)
- Minnesota DOC began using MnSTARR in 2013
 - Gender-specific, manually-scored assessment risk for multiple types of recidivism
 - Felony, non-violent, violent and sexual offending
 - Static and dynamic items
 - Average = 35 minutes to score (by prison caseworkers)
 - MnDOC \rightarrow Began using MnSTARR 2.0 in 2016
 - Similar to original MnSTARR <u>but</u>...
 - Fully-automated assessment (prison staff do not score it)
 - Overnight batch process and/or generated by caseworker (10-15 seconds to run)
 - About 2X the number of items (nearly 50 total)

Results from Duwe and Rocque (2017) Study

- Automation eliminates inter-rater disagreement
 - Every assessment is scored the same way (removes layer of error)
 - Doesn't mean data are flawless
- Increased reliability \rightarrow Better predictive performance
 - As reliability got worse in manual assessments, so did the predictive performance
 - Cases w/ more inter-rater disagreement = worse predictive performance
- Investment/Cost = \$135,000 to automate (a one-time cost)
- Return/Benefits = MnDOC staff time saved from automation
 - Monetized staff time = salary/benefits for prison caseworkers
 - Automation = major increase in assessment capacity
- Benefit/Cost Estimate after:
 - Year 1 = \$452,108; ROI = \$4.35 (Actual = \$955,990; ROI = \$8.08)
 - Year 2 = \$1.04 million; ROI = \$8.70 (Actual = \$1.8 million; ROI = \$13.32)
 - Year 5 = \$2.8 million; ROI = \$21.74

Bias in Risk Assessment

- ProPublica \rightarrow Use of COMPAS in Florida
 - Allegations of racial bias
- Canada \rightarrow performance for indigenous population
- A lot of confusion/misunderstanding
 - Risk Assessments used in a lot of different ways
 - Alternative?
 - Human/Professional Judgment = more biased
- Imperative to test for bias
 - Evaluate performance among sub-populations
 - Beyond this, not much guidance (yet)
 - A difference in performance does not equate to bias
 - Example: AUC of 0.90 versus AUC of 0.85

MnDOC Current Classification System

- Late 1990s \rightarrow MnDOC implemented a classification assessment
 - Received technical assistance from NIC (like a lot of other states)
- MnDOC Classification Assessment
 - Scored manually by staff
 - Conduct a file/database review
 - 6 Items
 - Current offense
 - History of assault
 - Institutional adjustment
 - History of escape
 - Age
 - Custody level at most recent release
 - Uses a simple, summative weighting scheme (Burgess)
- Parole violator admissions = not reassessed
- Never validated...until now

What's the MnSafeD?

- A fully-automated, gender-specific classification assessment that predicts severe and frequent misconduct for individuals in prison on a recurring, semi-annual basis
 - Classification assessments used to help make security/custody level decisions for those in prison
- Developed on sample of 39,355 releases from Minnesota prisons (2006-2011)
 - 35,506 males
 - 3,849 females
- Used bootstrap resampling, k-fold and split-population methods to select predictors and validate/test predictive performance
- Used multiple metrics to evaluate predictive performance

Predicting Prison Misconduct

- MnSafeD predicts "severe and frequent misconduct"
 - Multiple discipline convictions and/or violent/assaultive misconduct within a sixmonth period
 - About 10% of Minnesota's prison population
- Why not just predict all misconduct?
 - Nearly one-third of MN inmates have at least one discipline conviction (DC)
 - Attempting to predict who will have at least one DC = not helpful in managing risk
- Insight from career criminal literature
 - Small # of prolific offenders responsible for a lot of crime
 - Same is true for misconduct
 - 10% of MN prisoners = 70% of all DCs, 80% of seg DCs and 100% of violent DCs (males)
 - Compromise safety for staff and other inmates
 - Predictors of recidivism and prison misconduct = a lot of overlap

Other Design Assumptions

- Gender-specific
 - Potential gender differences in risk and protective factors
 - Males and females also housed in different facilities
 - Misconduct can be influenced by facility-level factors
- Fully-Automated Scoring Method
 - More reliable, valid, efficient and cost-effective than a manual scoring method
 - MnSafeD leverages work on MnSTARR 2.0
 - Fully-automated recidivism risk assessment used by MnDOC since November 2016
- Assessment predicts SFM at intake and reassesses every 6 months thereafter
 - This is how MnDOC uses its current classification assessment
 - Current classification assessment = predictive performance never evaluated
 - Based on NIC model from late 1990s (like a lot of state DOC's)

Model Development and Validation

- Regularized logistic regression = classification algorithm
 - "Shrinks" large coefficients to reduce overfitting
- Used bootstrap resampling method to help identify significant, robust predictors
 - P < .05 in at least 70% of 1K bootstrap samples
- Validation
 - Split samples into training (2006-2009 releases) and test (2010-2011 releases) sets; also used additional test set (2017 admissions)
 - Using 10-fold CV, varied ridge estimator value on training set data to help identify the best performing model
 - Best models were then applied to test sets to evaluate predictive performance
- Performance Metrics
 - ACC, AUC, H, PRC, RMSE, SAR and SHARP
 - Focus on AUC (for this presentation)

Dataset

- Predicted Outcome = SFM within a six-month window or release
 - Multiple discipline convictions and/or violent/assaultive misconduct within a six-month period
- Predictors (similar to those used for MnSTARR 2.0)
 - Criminal history
 - Type/severity of offenses, specialization in specific offenses (violent, felony, drug, etc.)
 - Offense type (index)
 - Prison admission type
 - Suicidal tendencies
 - Security threat group (gang affiliation)
 - Demographics \rightarrow age at release, marital status
- Main difference in predictors (between MnSTARR & MnSafeD)
 - Also considered prior prison misconduct (for those in prison previously)
 - Incorporated recent prison data for reassessments
 - Prison misconduct (frequency and severity)
 - Involvement in prison programming
 - UI status = unauthorized idle
- Data split up in 6-month intervals (per inmate)

Example: Male Prisoner Dataset

	Training Set (N)	Test Set (N)
Intake	23,838	11,668
Intake (2017 test set)	23,838	3,468
6-Month Reassessment	12,481	6,875
6-Month Reassessment (2017)	12,481	735
12-Month Reassessment	7,778	4,468
18-Month Reassessment	5,247	2,833
24-Month Reassessment	3,745	1,994
30-Month Reassessment	2,724	1,447
36-Month Reassessment	1,886	1,032
42-Month Reassessment	1,365	767

Predictive Performance Results for Female Test Set

	Current Classification (AUC)	MnSafeD (AUC)	Training Set N	Test Set N
Intake	0.628	0.759	2,546	1,303
Intake (2017 test set)	0.607	0.731	2,546	710
6-Month Reassessment	0.655	0.854	1,076	592
6-Month Reassessment (2017)	0.650	0.922	1,076	177
12-Month Reassessment	0.694	0.909	562	352
18-Month Reassessment	0.681	0.819	312	211
Overall Average	0.653	0.832		

- AUC "rule of thumb"
 - >= 0.90 ° "A"
 - 0.80-0.89 = "B"
 - 0.70-0.79 = "C"
 - 0.60-0.69 = ``D''
 - < 0.60 = "F"

Predictive Performance Results for Male Test Set

	Current Classification (AUC)	MnSafeD (AUC)	Training Set N	Test Set N
Intake	0.632	0.768	23,838	11,668
Intake (2017 test set)	0.617	0.747	23,838	3,468
6-Month Reassessment	0.665	0.828	12,481	6,875
6-Month Reassessment (2017)	0.650	0.800	12,481	735
12-Month Reassessment	0.674	0.857	7,778	4,468
18-Month Reassessment	0.674	0.876	5,247	2,833
24-Month Reassessment	0.690	0.884	3,745	1,994
30-Month Reassessment	0.666	0.871	2,724	1,447
36-Month Reassessment	0.688	0.888	1,886	1,032
42-Month Reassessment	0.697	0.840	1,365	767
Overall Average	0.665	0.836		

Explaining the Results

- MnSafeD = high level of predictive performance
 - Better than what's usually observed for recidivism, including MnSTARR (recidivism risk assessment for MN prisoners)
 - Why?
 - Predictive performance advantages:
 - Customized to MN population = "home field advantage"
 - Uses automated scoring = more reliable (no inter-rater disagreement)
 - Classification algorithm: RLR > Burgess methods
- Better than MnSTARR 2.0
 - Recent behavioral indicators = influential in predicting SFM
 - Severity and frequency of prison misconduct in last 6 months or since most recent admission to prison
 - UI status (no programming) in last 6 months

Next Steps

- MnSafeD = MnDOC new classification assessment
 - MnDOC IT currently working on implementing the MnSafeD
- MnSafeD will be used to help determine custodylevel placement
- Custody-level assignment is important
 - But should it be the only way a classification assessment is used?

Making the Case for Front-Loading

- Programming often "back-loaded" closer to time of release
 - There's good reason for this \rightarrow better recidivism outcomes
- Improving institutional safety = more than just custody-level placement
- Front-loading programming
 - ...at least for those at high-risk of SFM
 - Deliver programming to those at high risk of SFM shortly after intake/beginning of confinement
 - Example: immediately prioritize those at highest risk of SFM (top 5 percent) for an intervention (e.g., cognitive-behavioral therapy) at the beginning of confinement
 - Front-loading may not only reduce misconduct but also increase dosage
 - Greater dosage = better recidivism outcomes

Final Thoughts

- A lot of prison systems still use what are, by now, outdated classification assessments
 - How are these performing?
- MnSafeD represents one approach
 - <u>Not</u> designed to be a one-size-fits-all solution
 - Some of it may be worth replicating in the event prison systems (or jail systems) upgrade their classification assessments
 - MnSafeD study will be published in *The Prison Journal*
 - Citation: Duwe, G. (forthcoming). The development and validation of a prison classification system designed to predict severe and frequent misconduct. *The Prison Journal*.