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 Professor of Psychology at U of M from 
1945 to 2003

Paul Meehl: Clinical Psychologist at U of M 

• Book in 1954: Clinical vs. 
Statistical Prediction

• Found that “mechanical” 
(formal, algorithmic) 
prediction outperformed 
“clinical” judgment 
(informal and subjective)

• Mechanical prediction is 
more reliable consistent

• In the more than 70 
years since Meehl’s book, 
research from a variety of 
fields has consistently 
confirmed that statistical 
prediction outperforms 
clinical judgment



• Currently Professor at 
Princeton University

• Won the 2002 Nobel Prize 
in Economics for work on 
decision-making

Daniel Kahneman and Amos Tversky
• Kahneman and Tversky 

research on cognitive 
biases in decision-making

• Why statistical 
prediction outperforms 
professional judgment

• Examples
• Confirmation bias: 

discredit unsupportive 
info

• Anchoring: excessive 
weight to unimportant 
characteristics

• Familiarity/availability: 
situations seem similar

• Base rate bias: favor 
specific info about a 
case vs. general info 
about group



Research on Use of “Expert” Judgment
• Fields outside corrections that make risk assessment 

decisions
• Health care, financial lending, insurance, stock trading
• Evidence consistently shows that algorithms perform better than 

“expert” opinion or professional judgment
• This is why all of these fields now rely mostly on algorithms/statistical 

prediction to make risk assessment decisions (process is often automated)
• More valid, reliable, objective, efficient and cost-effective

• Corrections  predicting who will recidivate
• General recidivism for correctional populations

• Professional overrides led to reduced predictive performance 
• Wormith et al. (2012)
• McCafferty (2017)



Prior Research on Customization

• Not much research has explicitly addressed this issue
• Customized vs. Global, “off the shelf”

• But here’s what we know:
• A few studies suggest local instruments likely have better performance than 

assessments developed on other correctional populations

• Example: Level of Service (LS) family of tools (LSI-R and 
LS/CMI)

• Most widely-used assessment for general recidivism
• LS tools = developed and validated on Canadian correctional populations
• Meta-analysis of LS validation studies (Olver et al., 2014)

• Best performance for LS tools  studies on Canadian offender populations
• Worst performance for LS tools  studies on U.S. offender populations

• Validation research on the LSI-R for MN prisoners confirms this
• LSI-R = relatively poor performance in predicting recidivism for MN prisoners



The “Home-Field Advantage”

• Study by Duwe and Rocque (2018): MnSOST-3 
outperformed Static-99 on MN sex offender population

• Static-99: developed on SO population from Canada/UK
• MnSOST-3: developed on MN sex offender population

• There is a home-field advantage to risk assessment
• Home-grown assessments will (all else being equal) likely 

outperform assessments developed elsewhere
• Common Practice—what usually happens

• Use assessment developed/validated on another correctional population
• Assume assessment will perform just as well on own population
• This is not a safe assumption to make

• What should happen  An assessment’s performance should be 
evaluated/tested before it is used to help inform decisions



Impact of Using Automated Scoring Method

• Duwe and Rocque (2017) study in Criminology & Public Policy
• Examined effects of automated risk assessment on reliability, predictive 

validity and return on investment (ROI)

• Minnesota DOC began using MnSTARR in 2013
• Gender-specific, manually-scored assessment risk for multiple types of 

recidivism 
• Felony, non-violent, violent and sexual offending
• Static and dynamic items

• Average = 35 minutes to score (by prison caseworkers)

• MnDOC  Began using MnSTARR 2.0 in 2016
• Similar to original MnSTARR but…

• Fully-automated assessment (prison staff do not score it)
• Overnight batch process and/or generated by caseworker (10-15 seconds to run)

• About 2X the number of items (nearly 50 total)



Results from Duwe and Rocque (2017) Study

• Automation eliminates inter-rater disagreement
• Every assessment is scored the same way (removes layer of error)
• Doesn’t mean data are flawless

• Increased reliability  Better predictive performance
• As reliability got worse in manual assessments, so did the predictive 

performance
• Cases w/ more inter-rater disagreement = worse predictive performance

• Investment/Cost = $135,000 to automate (a one-time cost)
• Return/Benefits = MnDOC staff time saved from automation 

• Monetized staff time = salary/benefits for prison caseworkers
• Automation = major increase in assessment capacity

• Benefit/Cost Estimate after:
• Year 1 = $452,108; ROI = $4.35 (Actual = $955,990; ROI = $8.08)
• Year 2 = $1.04 million; ROI = $8.70 (Actual = $1.8 million; ROI = $13.32)
• Year 5 = $2.8 million; ROI = $21.74



Bias in Risk Assessment

• ProPublica  Use of COMPAS in Florida
• Allegations of racial bias

• Canada  performance for indigenous population
• A lot of confusion/misunderstanding

• Risk Assessments used in a lot of different ways
• Alternative?

• Human/Professional Judgment = more biased

• Imperative to test for bias
• Evaluate performance among sub-populations
• Beyond this, not much guidance (yet)

• A difference in performance does not equate to bias
• Example: AUC of 0.90 versus AUC of 0.85



MnDOC Current Classification System

• Late 1990s  MnDOC implemented a classification assessment
• Received technical assistance from NIC (like a lot of other states)

• MnDOC Classification Assessment
• Scored manually by staff

• Conduct a file/database review

• 6 Items
• Current offense
• History of assault
• Institutional adjustment
• History of escape
• Age
• Custody level at most recent release

• Uses a simple, summative weighting scheme (Burgess)

• Parole violator admissions = not reassessed
• Never validated…until now



What’s the MnSafeD?

• A fully-automated, gender-specific classification assessment that 
predicts severe and frequent misconduct for individuals in prison on a 
recurring, semi-annual basis

• Classification assessments used to help make security/custody level decisions 
for those in prison

• Developed on sample of 39,355 releases from Minnesota prisons 
(2006-2011)

• 35,506 males
• 3,849 females

• Used bootstrap resampling, k-fold and split-population methods to 
select predictors and validate/test predictive performance

• Used multiple metrics to evaluate predictive performance 



Predicting Prison Misconduct

• MnSafeD predicts “severe and frequent misconduct”
• Multiple discipline convictions and/or violent/assaultive misconduct within a six-

month period
• About 10% of Minnesota’s prison population

• Why not just predict all misconduct?
• Nearly one-third of MN inmates have at least one discipline conviction (DC)

• Attempting to predict who will have at least one DC = not helpful in managing risk

• Insight from career criminal literature
• Small # of prolific offenders responsible for a lot of crime
• Same is true for misconduct

• 10% of MN prisoners = 70% of all DCs, 80% of seg DCs and 100% of violent 
DCs (males)

• Compromise safety for staff and other inmates

• Predictors of recidivism and prison misconduct = a lot of overlap



Other Design Assumptions

• Gender-specific
• Potential gender differences in risk and protective factors
• Males and females also housed in different facilities

• Misconduct can be influenced by facility-level factors

• Fully-Automated Scoring Method 
• More reliable, valid, efficient and cost-effective than a manual scoring method
• MnSafeD leverages work on MnSTARR 2.0

• Fully-automated recidivism risk assessment used by MnDOC since November 2016

• Assessment predicts SFM at intake and reassesses every 6 months 
thereafter

• This is how MnDOC uses its current classification assessment
• Current classification assessment = predictive performance never evaluated
• Based on NIC model from late 1990s (like a lot of state DOC’s)



Model Development and Validation

• Regularized logistic regression = classification algorithm
• “Shrinks” large coefficients to reduce overfitting

• Used bootstrap resampling method to help identify significant, 
robust predictors

• P < .05 in at least 70% of 1K bootstrap samples

• Validation
• Split samples into training (2006-2009 releases) and test (2010-2011 releases) 

sets; also used additional test set (2017 admissions)
• Using 10-fold CV, varied ridge estimator value on training set data to help 

identify the best performing model
• Best models were then applied to test sets to evaluate predictive performance

• Performance Metrics
• ACC, AUC, H, PRC, RMSE, SAR and SHARP

• Focus on AUC (for this presentation)



Dataset
• Predicted Outcome = SFM within a six-month window or release

• Multiple discipline convictions and/or violent/assaultive misconduct within a six-month period

• Predictors (similar to those used for MnSTARR 2.0)
• Criminal history

• Type/severity of offenses, specialization in specific offenses (violent, felony, drug, etc.)

• Offense type (index)
• Prison admission type
• Suicidal tendencies
• Security threat group (gang affiliation)
• Demographics age at release, marital status

• Main difference in predictors (between MnSTARR & MnSafeD)
• Also considered prior prison misconduct (for those in prison previously)
• Incorporated recent prison data for reassessments

• Prison misconduct (frequency and severity)
• Involvement in prison programming

• UI status = unauthorized idle

• Data split up in 6-month intervals (per inmate)



Example: Male Prisoner Dataset

Training Set (N) Test Set (N)

Intake 23,838 11,668

Intake (2017 test set) 23,838 3,468

6-Month Reassessment 12,481 6,875

6-Month Reassessment (2017) 12,481 735

12-Month Reassessment 7,778 4,468

18-Month Reassessment 5,247 2,833

24-Month Reassessment 3,745 1,994

30-Month Reassessment 2,724 1,447

36-Month Reassessment 1,886 1,032

42-Month Reassessment 1,365 767



Predictive Performance Results for Female Test Set

• AUC “rule of thumb”
• >= 0.90 ‘ “A”
• 0.80-0.89 = “B”
• 0.70-0.79 = “C”
• 0.60-0.69 = “D”
• < 0.60 = “F”

Current 
Classification
(AUC)

MnSafeD
(AUC)

Training Set
N

Test Set
N

Intake 0.628 0.759 2,546 1,303

Intake (2017 test set) 0.607 0.731 2,546 710

6-Month Reassessment 0.655 0.854 1,076 592

6-Month Reassessment (2017) 0.650 0.922 1,076 177

12-Month Reassessment 0.694 0.909 562 352

18-Month Reassessment 0.681 0.819 312 211

Overall Average 0.653 0.832



Predictive Performance Results for Male Test Set
Current 
Classification
(AUC)

MnSafeD
(AUC)

Training Set
N

Test Set
N

Intake 0.632 0.768 23,838 11,668

Intake (2017 test set) 0.617 0.747 23,838 3,468

6-Month Reassessment 0.665 0.828 12,481 6,875

6-Month Reassessment (2017) 0.650 0.800 12,481 735

12-Month Reassessment 0.674 0.857 7,778 4,468

18-Month Reassessment 0.674 0.876 5,247 2,833

24-Month Reassessment 0.690 0.884 3,745 1,994

30-Month Reassessment 0.666 0.871 2,724 1,447

36-Month Reassessment 0.688 0.888 1,886 1,032

42-Month Reassessment 0.697 0.840 1,365 767

Overall Average 0.665 0.836



Explaining the Results

• MnSafeD = high level of predictive performance
• Better than what’s usually observed for recidivism, including 

MnSTARR (recidivism risk assessment for MN prisoners)

• Why?
• Predictive performance advantages:

• Customized to MN population = “home field advantage”
• Uses automated scoring = more reliable (no inter-rater disagreement)
• Classification algorithm: RLR > Burgess methods

• Better than MnSTARR 2.0
• Recent behavioral indicators = influential in predicting SFM

• Severity and frequency of prison misconduct in last 6 months or since most 
recent admission to prison

• UI status (no programming) in last 6 months



Next Steps

• MnSafeD = MnDOC new classification assessment
• MnDOC IT currently working on implementing the MnSafeD

• MnSafeD will be used to help determine custody-
level placement

• Custody-level assignment is important

• But should it be the only way a classification assessment is used?



Making the Case for Front-Loading
• Programming often “back-loaded” closer to time of release 

• There’s good reason for this  better recidivism outcomes

• Improving institutional safety = more than just custody-level 
placement

• Front-loading programming
• …at least for those at high-risk of SFM

• Deliver programming to those at high risk of SFM shortly after intake/beginning of 
confinement

• Example: immediately prioritize those at highest risk of SFM (top 5 percent) for an intervention (e.g., 
cognitive-behavioral therapy) at the beginning of confinement 

• Front-loading may not only reduce misconduct but also increase dosage
• Greater dosage = better recidivism outcomes



Final Thoughts
• A lot of prison systems still use what are, by now, outdated 

classification assessments
• How are these performing?

• MnSafeD represents one approach
• Not designed to be a one-size-fits-all solution
• Some of it may be worth replicating in the event prison systems (or jail systems) 

upgrade their classification assessments

• MnSafeD study will be published in The Prison Journal
• Citation: Duwe, G. (forthcoming). The development and validation of a prison 

classification system designed to predict severe and frequent misconduct. The 
Prison Journal. 
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